Adaptive Martingale Boosting
نویسندگان
چکیده
In recent work Long and Servedio [LS05] presented a “martingale boosting” algorithm that works by constructing a branching program over weak classifiers and has a simple analysis based on elementary properties of random walks. [LS05] showed that this martingale booster can tolerate random classification noise when it is run with a noise-tolerant weak learner; however, a drawback of the algorithm is that it is not adaptive, i.e. it cannot effectively take advantage of variation in the quality of the weak classifiers it receives. We present an adaptive variant of the martingale boosting algorithm. This adaptiveness is achieved by modifying the original algorithm so that the random walks that arise in its analysis have different step size depending on the quality of the weak learner at each stage. The new algorithm inherits the desirable properties of the original [LS05] algorithm, such as random classification noise tolerance, and has other advantages besides adaptiveness: it requires polynomially fewer calls to the weak learner than the original algorithm, and it can be used with confidencerated weak hypotheses that output real values rather than Boolean predictions.
منابع مشابه
Interactive Martingale Boosting
We present an approach and a system that explores the application of interactive machine learning to a branching program-based boosting algorithm—Martingale Boosting. Typically, its performance is based on the ability of a learner to meet a fixed objective and does not account for preferences (e.g., low FPs) arising from an underlying classification problem. We use user preferences gathered on ...
متن کاملMartingale Boosting
Martingale boosting is a simple and easily understood technique with a simple and easily understood analysis. A slight variant of the approach provably achieves optimal accuracy in the presence of misclassification noise.
متن کاملOptimally-Smooth Adaptive Boosting and Application to Agnostic Learning
We describe a new boosting algorithm that is the first such algorithm to be both smooth and adaptive. These two features make possible performance improvements for many learning tasks whose solutions use a boosting technique. The boosting approach was originally suggested for the standard PAC model; we analyze possible applications of boosting in the context of agnostic learning, which is more ...
متن کاملAdaptive Boosting for Spatial Functions with Unstable Driving Attributes
Combining multiple global models (e.g. back-propagation based neural networks) is an effective technique for improving classification accuracy by reducing a variance through manipulating training data distributions. Standard combining methods do not improve local classifiers (e.g. k-nearest neighbors) due to their low sensitivity to data perturbation. Here, we propose an adaptive attribute boos...
متن کاملOnline multiclass boosting
Recent work has extended the theoretical analysis of boosting algorithms to multiclass problems and to online settings. However, the multiclass extension is in the batch setting and the online extensions only consider binary classification. We fill this gap in the literature by defining, and justifying, a weak learning condition for online multiclass boosting. This condition leads to an optimal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008